
Dr. Moustafa Alzantot

Information System Design
Lecture 5: Creational Design Patterns

Design Patterns (revisited)

Design Pattern
•A solution for a recurring problem in a large OOP system.

•Highly optimal since it is designed and revised by experts.

•Abstract from any particular programming language.

Design Patterns (revisited)

Benefits of Applying Design Patterns
•Increases design speed and quality.

•Promotes design reuse.

•Makes it easier to other developers to understand the system design
since it provides a standard vocabulary and building blocks.

• GoF book 1995

Design Patterns: Elements of Reusable Object-
Oriented Software

• Describes 23 design patterns are categorized by
their purpose into 3 categories:

• Creational

• Structural

• Behavioral

Design Patterns (revisited)

Problem: In what situation should this pattern be used?

Solution: What should you do? What is the pattern?

• describe details of the objects/classes/structure needed

• should be somewhat language-neutral

Advantages: Why is this pattern useful?

Disadvantages: Why might someone not want this pattern?

Singleton Pattern

Singleton: An object that is the only object of its type.

	 (one of the most known / popular design patterns)

Problem:

•Ensures that a class has at most one instance.

•Providing a global access point to that instance.

•e.g. providing an accessor method that allows users to get that instance
anywhere in the program.

Singleton

Example use cases:

•Logger that saves program status updates to disk or somewhere else.

•Hardware interface class.

•User preferences in a mobile application.

•Database connection.

What else ??!

Singleton : Implementation

Design Recipe:
•Make constructor(s) private, so that they can not be called from outside by clients.

•Declare a single (private static) instance of the class.

•Write a public GetInstance() or similar method that allows access to that single
instance.

•It is possible to use lazy initialization to create this instance only when needed.

•May need to protect/ synchronize this method to ensure that it will work well in
a multi-threaded program.

Singleton

Singleton

Benefits of using Singleton:
•Takes responsibility of managing that instance away from the
programmer (it becomes illegal to create more than one instance).

•Save the cost (memory and time) of creating multiple instances.

•Avoids bugs due to having multiple instances with inconsistent states.

Singleton

Disadvantages of using Singleton:
•The code becomes tightly coupled and harder to test. This could
violate the dependency inversion principle.

•Could also lead to a violation of SRP; because it combines the
responsibility of object creation and other business logic.

