Information System Design

Lecture 5: Creational Design Patterns

e
O
e
-
)
N
<
©
Y
1Y)
e
N
-
O
>
G
o




Design Patterns (revisited)

Design Pattern
*A solution for a recurring problem in a large OOP system.
*Highly optimal since it Is designed and revised by experts.
Abstract from any particular programming language.



Design Patterns (revisited)

Benefits of Applying Design Patterns
|ncreases design speed and quality.
‘Promotes design reuse.

‘Makes it easier to other developers to understand the system design
since It provides a standard vocabulary and building blocks.



e GoF book 1995

RN 2

Desion Patterns

Design Patterns: Elements of Reusable Object-

Flements of Reusable

Oriented Software Object-Orientéd Software ?

. . . trich Camma -

* Describes 23 design patterns are categorized by Richard HSNE g
their purpose into 3 categories: john Viissides

\
.
-
-

e Creational

e Structural

Fomueas

e Behavioral




GoF Design Patterns

Desion Patterns

Elements of Reusable

F Meth - I |
actory Method Adaptor - class nterpreter Object-Oriented Software
Template Method
trich Camma
AT h.l't’! "'k‘*ﬂ
Abstract Factory Adaptor-object Chain of responsibility Ralph |ohnson
lohn Vissides

Visitor -

| Interproter
_Template Method _
 Chain of responsibilty
Builder Bridge
Prototype Composite
Decorstor
Facade
Flyweight
Proxy )
=
____ Visitor -



Design Patterns (revisited)

Problem: In what situation should this pattern be used?
Solution: What should you do”? What is the pattern?

* describe details of the objects/classes/structure needed
* should be somewhat language-neutral

Advantages: Why is this pattern useful?

Disadvantages: \Why might someone not want this pattern?



Singleton Pattern

Singleton: An object that is the only object of its type.
(one of the most known / popular design patterns)

Problem:
Ensures that a class has at most one instance.
*Providing a global access point to that instance.

e.g. providing an accessor method that allows users to get that instance
anywhere In the program.



Singleton

Example use cases:

*Logger that saves program status updates to disk or somewhere else.
‘Hardware interface class.

User preferences in a mobile application.

-Database connection.

What else ??!



Singleton : Implementation

Design Recipe:
‘Make constructor(s) private, so that they can not be called from outside by clients.
‘Declare a single (private static) instance of the class.

*Write a public GetInstance () or similar method that allows access to that single
iInstance.

|t Is possible to use lazy initialization to create this instance only when needed.

‘May need to protect/ synchronize this method to ensure that it will work well in
a multi-threaded program.



Singleton

- iInstance: Singleton

- Singleton()
+ getinstance(): Singleton

if (instance == null) {
// Note: if you're creating an app with
// multithreading support, you should
// place a thread lock here.
Instance = new Singleton()

}

return instance




Singleton

Benefits of using Singleton:

» Takes responsibility of managing that instance away from the
programmer (it becomes illegal to create more than one instance).

Save the cost (memory and time) of creating multiple instances.
*Avoids bugs due to having multiple instances with inconsistent states.



Singleton

Disadvantages of using Singleton:

*The code becomes tightly coupled and harder to test. This could
violate the dependency inversion principle.

*Could also lead to a violation of SRP; because it combines the
responsibility of object creation and other business logic.



